mdspass2 チュートリアルと演習

last update: Jan 2019

パート III:構造体の変形

- ナノワイヤのモデル作成と引張り解析 銅のナノワイヤのモデルを作成し、引張り MD 計算をしてみます.
 - Create config パネルを開き, Atom は Cu, Potential は EAM Mishin, その下の構造は FCC を選択します. # of rep in x/y/z はそれぞれ, 3,3,8 とし, Lattice const. は 3.61 とします. Create し, Close でパネルを閉じます.
 - Set parameters パネルを開き,各種セッティングをします. Draw bond にチェック, Bond length は 2.8 程度が良いでしょう. Relax algo は GLOC にチェックしておきます. Deformation settings を開き, ex/ey/ez がすべて 0 となっているのを確認します(違ったら 0 を入力). Close でパネルを閉じます.
 - 3. Control パネルで, Potential ARG を Mishin にセットします. PBC x/y のチェッ クを外し, PBC z のチェックを入れます. こうすることで z 方向のみに周期境界条 件が課され, ナノワイヤの計算となります.
 - 4. dt は 2.0 程度とし、Algorithm を Relaxation (atom)にして、MD 計算を数百ステ ップ行います (MD on/off ボタンを使用します).
 ※x,y 方向に原子構造が少しだけ収縮します.
 - 5. このままだと構造がほぼ完全な理想格子状態となり,のちに引張や圧縮を与えた場合に変形が起こりにくくなる(不安定平衡:図参照)ので,少し原子を「揺すって」 やります.

Temp set を 300 程度とし, Algorithm を NVT として, MD 計算を開始します. 原 子が振動し始めるのが分かります. 数百ステップ MD を行った後, MD を一旦停止 します. Algorithm を Relaxation (atom) に切り替え, 再び MD 計算を実行して, 構造緩和計算が行われます (数百ステップ行えばよい).

※原子構造の変化が見た目ではほぼ無くなりますが、上記の手続き(有限温度 MD +構造緩和)によって、ごくわずかな「初期不整」が与えられます.

図:構造不安定化と不安定平衡のイメージ。

- 6. この構造を用いて、引張りシミュレーションをします. 緩和計算の効率を上げるため、Set parameter パネルで Relax algo を FIRE*に切替えます. Atom color をロールアウトし、ラジオボタンの CSP を選択します. Autorange を外し、min を 0、max を 0.03 とします. これは、結晶すべりによる積層欠陥の形成を視覚化するのに適した着色法です. Deformation settings エリアで、ez に 0.002 程度の値を入れ、Repeat Lz のチェックを外します. Close でパネルを閉じます.
 ※FIRE: Bitzek et al., Phys. Rev. Lett. 97 (2006), 170201 "Structural Relaxation Made Simple" 構造緩和の際の時間ステップを増減させる(例えば勾配が小さいときに dt を増大させる)等の工夫により構造緩和の効率を上げる方法.
- 7. Control パネルで、Algorithm が Relaxation (atom)となっていることを確認し、 MD 計算をスタートします. すると z 方向への引張り MD 計算が開始します. しば らくすると急激に構造変化が起こります. 初期不整があるので、きわめてゆっくり 引張っていけば (ez の値がもっと小さければ)、エッジ部からの転位発生などがみ られるはずです. ですがここでは引張り速度が速すぎて (かつ初期不整がそれほど 大きくないために)、構造全体が一気に相変態したような挙動が見られるはずです.
- そこで、もう少し大きな初期不整を与えてみます. Create config パネルを開き、下の方にある Edit config をロールアウトします. この状態で、MD viewer 上で適当なエッジ原子を左クリックすると、その原子が着色され、Edit config エリアにその原子の情報が表示されます. そこで、Remove atom ボタンを押すとこの原子が消去されます(原子数が一つ減ります). Close で Create config パネルを閉じてください.
- 9. ついでに、単純な引張り解析でなく、z軸方向への引張/圧縮繰返し解析に切替え

てみます. Set parameters パネルを開き, Deformation settings エリアで Repeat Lz にチェックを入れ, Lz(min)に 30.0, Lz(max)に 34.0 と入力します. Close でパ ネルを閉じます. こうするとセルの z 方向サイズ Lz が Lz(min)および Lz(max)に なるたびに ez の符号が逆転され, Lz がこれらの値の間を往復します.

- 10. このセッティングで、MD 計算を開始してみてください. セルの z 方向サイズが 33Å に至る少し前に、先ほど取り除いた原子のあたりを起点として結晶すべり変形 が起こります. まだ変形速度が速いため、相変態のような挙動も部分的に見られま すが、繰返し変形をじっと観察しているとすべり様の挙動がみられるはずです. Rotation コントローラで視点角度を変えてみると見やすくなるかもしれません. Lz(min)、Lz(max)の値を若干変更すると違った様子が見られますので、色々と試し てみて下さい.
- 11. MD 計算中の応力は、stress.d というファイルに出力されます。形式は、ステップ 数, *σ_x*, *σ_y*, *σ_z*, *τ_{xy}*, *τ_{yz}*, *τ_{zx}* となっています。また、セルのサイズは cell.d というファ イルに出力され、形式はステップ数, *h*₁₁, *h*₂₁, *h*₃₁, *h*₁₂, *h*₂₂, *h*₃₂, *h*₁₃, *h*₂₃, *h*₃₃ です(図参 照)。

2. カーボンナノチューブ(CNT)のモデル作成と軸方向圧縮解析 <モデル作成>

- 1. Create Config をクリックして、Create config パネルより CNT の構造を作成しま す。Atom は C とし、Potential は Brenner を選択します。その下のラジオボタン は、Nanotube を選択してください。パネル上方の右側の# of rep in x/y/z 入力欄、 それぞれ 1, 1, 20 と入力してください。これで、z 方向(CNT の軸方向)にユニッ トセル20 個分の長さを持ったナノチューブ構造が作成されることになります。 ※ユニットセルの軸方向サイズがどの程度になるかは、カイラルベクトル(下記) によって異なります。カイラル型 CNT の場合(n \neq 0 かつ m \neq n)には一般に、大き なサイズになります。
- その下のmof(m,n)とnof(m,n)欄には、CNTのカイラルベクトルを入力します (カイラルベクトルについては図を参照してください)。ここでは細いジグザグ型 CNTを作成することにします。m=8, n=0としてください。
- 3. その下の NT cell size (x/y) 欄は、軸と垂直方向のセルサイズをいくつにするかを Å 単位で指定します。ナノチューブの直径よりある程度大きければ問題ないので、 例えば 50 を入力してください。(x,y 方向には周期境界条件を課さないので、ナノ チューブ直径より小さい値でない限り問題は生じません。)なお、Nanotube 構造を 指定した場合は最近接原子間距離がグラフェンの実験値 0.142nm となるように構

造が作成される仕様なので、Lattice const.入力欄は無視してください。パネルの一 番下、Create をクリックしてください。MD viewer ウインドウに構造が現れたら、 Create config パネルの下の Close をクリックして閉じます。

図: CNTの構造を示すカイラルベクトル。(m, n)の形で示され、 $C_v = ma_1 + na_2$ である。n = 0の場合は zigzag 型、m = nの場合は armchair 型と呼ばれる。

<軸方向圧縮解析>

- 1. Control パネルで、PBC x および PBC y のチェックを外し、PBC z にチェックを 入れてください。z 方向(CNT の軸方向)のみに周期境界条件が課されます。
- Set param ボタンを押して Set parameters パネルを開きます。Setup for drawing をロールアウトし、Draw bond にチェックを入れ、Bond length 欄に 1.6 を入力し ます(値が大きいと第2近接原子間も接続されてしまい、見にくくなるし描画も遅 くなります)。Draw Force のチェックは外しておいた方が見やすいでしょう。さら に Atom color をロールアウトし、Energy にチェック、Autorange にもチェックを 入れます。Sphere radius や Sphere segment は適当で良いですが、それぞれ 4, 8 あたりが適当と思われます。
- Relax algo は GLOC にしておきます。Deformation settings をロールアウトし、 ex, ey, ez の値がゼロとなっていることを確認します。Close ボタンを押し、Set parameters パネルを閉じます。
- Algorithm を Relaxation (atom) にし、MD on/off を押して緩和計算を実行します。
 100 ステップほど行えばよいと思います。
- 5. Temp set の欄に、設定温度(例えば 100)を入力し、Algorithm を NVT にして温 度一定解析の MD 計算モードとします。MD 計算の時間ステップ dt は 1.0 として おきます。Set param を押してパネルを開き、Deformation settings をロールアウ トして ez に負の値(例えば-0.02)を入力します。Repeat Lz のチェックは外して おきます。Close を押してパネルを閉じます。
- 6. MD on/off を押し、圧縮 MD 計算を開始します。ある程度圧縮が進むと、CNT が

S字状に屈曲し、さらに進むと「く」の字に折れ曲がるので、MD on/off を押して 一度 MD 計算をストップしてみます。このような屈曲、折れ曲がりは不安定変形で あり、座屈と呼ばれます。

7. なお、Reset ボタンを押すと、構造作成をした直後の状態に戻ります。圧縮 MD を 失敗した場合、計算条件を少し変更してみたい場合に利用してください。

<座屈後の状態の観察>

- MD を停止した状態で、Control パネルの視点コントローラ (Rotation, Objects XY, Objects Z) を操作して色々な角度から原子構造を観察してください。折れ曲がった 部分の一部の原子の色が変わっており、エネルギーが高くなっていることがわかり ます。
- また、ボンドの組み換えが生じることで6員環が5員環や7員環に変化している箇所もあるかもしれませんので探してみてください。
 ※視点を操作させすぎて元に戻せなくなったときは、MD viewer 画面上をクリックして "r" キーを押せば、視点が最初の状態に戻ります。

<圧縮座屈後の引張り>

- Set param を押してパネルを開き、Deformation settings 内の ez を正の値にしま す(例えば 0.02)。Repeat Lz のチェックが外れていることを再度確認してくださ い。(チェックが入っていると、セルの z 方向長さが Lz(min)と Lz(max)の間に収 まるように強制的に ez の符号が逆転されてしまいます)
- 2. Close を押してパネルを閉じ、MD on/off を押して引張り MD 解析を開始します。 折れ曲がっていた箇所が徐々に引き伸ばされ、元の CNT 構造に戻っていくはずで す。5員環や7員環を形成するようにボンドの組み換えが起こっていた箇所も、元 通りの6員環に戻るはずです(戻らないこともあるかもしれません)。CNT はこの ように、非常に強い変形を与えてもボンドの組み換えによってひずみを吸収し、除 荷すると元に戻るという高い柔軟性を持った特殊な材料であることが分かります。

[演習]

1. ナノワイヤの引張・圧縮

上記を参考に、ナノワイヤの単純引張り・単純圧縮・引張・圧縮の繰返しのシミュレ ーションを行い、その結果をスナップショットやグラフを用いて説明せよ。例えば、 すべりなどの構造変化が起こる時に応力がどのように変わるか、初期構造不正(欠 陥)やひずみ速度によって変形挙動がどのように変わるかなどを観察すること。温 度を適当に設定して温度一定条件でやってみるとか、適宜原子種(Cu, Al, Si などが やり易いと思われる)やワイヤのサイズを変えてみるなど、色々と試してほしい。

2. CNT の座屈

CNT の構造・サイズを変えてみて、それに伴って座屈変形がどのように変化するか 調べよ。カイラルベクトル(m,n)を例えば(20,0)などとすると大径の CNT 構造とな る。

※円筒構造の座屈問題では、長さに対して径が極めて小さい(アスペクト比が大き い)ときはS字状座屈(材料力学で言うところのオイラー座屈)が、アスペクト比 が大きくなるとドラム缶がつぶれるような座屈変形(提灯型座屈やダイヤモンド型 座屈と呼ばれる)が生じることが知られている。CNTではアスペクト比が大きいと きはS字状形状やキンク(くびれ部)を伴う座屈形状、アスペクト比が小さいとき はフィン型の座屈形状が観察されるはず(下図参照)。

Kink-typeFin-type図:CNT 軸方向圧縮の座屈形状の例。